Personal tools
You are here: Home 人工智能入门

人工智能入门

for fun

https://www.tensorflow.org/get_started/get_started

import numpy as np
import tensorflow as tf

# Model parameters
W
= tf.Variable([.3], dtype=tf.float32)
b
= tf.Variable([-.3], dtype=tf.float32)
# Model input and output
x
= tf.placeholder(tf.float32)
linear_model
= W * x + b
y
= tf.placeholder(tf.float32)
# loss
loss
= tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
# optimizer
optimizer
= tf.train.GradientDescentOptimizer(0.01)
train
= optimizer.minimize(loss)
# training data
x_train
= [1,2,3,4]
y_train
= [0,-1,-2,-3]
# training loop
init
= tf.global_variables_initializer()
sess
= tf.Session()
sess
.run(init) # reset values to wrong
for i in range(1000):
  sess
.run(train, {x:x_train, y:y_train})

# evaluate training accuracy
curr_W
, curr_b, curr_loss = sess.run([W, b, loss], {x:x_train, y:y_train})
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))

Comments (0)